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1 LASSO Prediction Error Bound and High-Dimensional
Principal Component Analysis

1.1 Recap: overview of results for noisy, sparse linear regression
Let’s finish up our analysis of noisy, sparse linear regression. Our model is y = X0* +w €
R", where

]

weR",  X=|:|eR™ ¢ cRY  |9(0%) <s.

T
Ln

We looked at the A formulation of the LASSO problem, where
~ 1
6 € argmin 2*HQ — X013+ A ||0]]1-
gcrd 4T

We also looked at the 1-norm constrained and error-constrained formulations of the prob-
lem. We defined the C, cone

Ca(S) = {A € R: [Ase|l1 < af|Asll1}-

Using this cone, we defined the restricted eigenvalue condition for efficient bounds on
estimation.

Definition 1.1. X ~ RE(S, (k,«a)) if
1
~[XA3 2 slIAl; VYA € Ca(S).

We proved the following result, upper bounding the estimation error.

Theorem 1.1. Assume that RE(s, (k,3)). With a proper choice of hyperparameter, we

have
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We also showed that Gaussian random matrices satisfy this condition with high prob-
ability.

Theorem 1.2. Let X € R™ % have iid N(0,1) entries. If n > slogd, then with high
probability, X ~ RE(S, (k,3)) for all |S| < s.

1.2 LASSO prediction error bound

Instead of bounding ||§— 0*||2, we would like to bound the prediction errror (with fixed
design):

1 IR 1 oo~
ﬁEm[Hy—Xﬂ\g] = —lx(6 -6 )3+ o2,

where § = X0* + w and ~N(0,0%I;). We can upper bound %||X(6A?— 0|12 < ||§—
0121 X " X/n||op; however, this is not always a good bound because || X X/n|/op, which
has order d/n (which blows up for n < d). Instead, we want to bound the prediction error
directly

Theorem 1.3 (Prediction error bound). Let 6* be s-sparse. Assume that the hyperparam-
eter in the \-formulation of the LASSO problem is A, > 2HXTT“’||C>o Then

1. Any optimal solution ) satisfies the bound
1 n *\ (12 *
X0 = 67)l12 < 12[167 1 An.

2. If X satisfies RE(S, (k,3)), then

1 ~ 9
“IX (6 —6%)3 < =sA\2.
IX@ -0 < ~x2
Proof. As before, the proof is a basic inequality, plus some algebra. ]

Remark 1.1. The first bound is < [|6%||11/2%%4, so we get decay O(1/y/n). This is called

n

the slow rate bound. The second bound is < s( %)2, so we get decay O(1/n). This
is called the fast rate bound. Usually, without imposing any geometric assumptions, we
get a slower rate bound than we get with such assumptions.

This phenomenon occurs in many settings such as in the empirical risk minimization
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The setting is that we have data (z;);c[n) % P, and a loss function £ : © x Z — R. The

empirical risk is
n

~ 1
R,(0)=—=)» (0;X;),
)= 5 20
and the population risk is
R(6) = E[0(6; Z)).
If we take § = arg ming R, (#), the minimizer of the empirical risk, then our generalization
error is R
R(0) — R(67).

Without geometric assumptions, we can show a uniform convergence bound

R(9) — R(6*) < 2sup|R, () — R(6)|.
0co

Suppose © = B(0,10]|6*||). The upper bound of such an empirical process usually scales
linearly in ||6*||, which does not give a very sharp prediction error bound.

Here is what we get with a geometric assumption. Assume that n||§ —0*% < (R(g) -
R(6*)). Here, k is a strong convexity parameter. With this assumption, we can show
an upper bound that is like

RO)-ROY<2 s Ru(0) - RO 18- 07y 120
6B (0,0-6°|2) "

This is nice because it scales linearly in the estimation error, which is usually smaller than

|6%||. We can bound [|6 — 6%||s < %. Applying the geometric assumption gives the

bound
dlogd

n

R(6) — R(6*) <



1.3 Principal component analysis in high dimensions
Suppose we observe covariates X1, Xo,..., X, 1 X ¢ R? with E[X] = 0 and Cov(X) =
Y e Sﬁerd. Let the eigenvalues of ¥ be A;(X) > X2(X) > --- > A\g(¥) > 0. We can find
an orthonormal basis of eigenvectors v1(X),...,v4(2) € R? such that Yv; = \v; for all
i € [d]. If we let A = diag(\1,...,\g) € R™? nad B = [vy,...,v4] € R¥*? then we can
write ¥ = VAV .

The statistical interpretation of v; is that

vy € argmax Var((z,v)) X € RLE[X] = 0.

l[olla=1
= arg max (v, E[X X "]v)
l[oll2=1

= arg max (v, Xv).
l[va]l=1

More generally, if we let Vi, = [vq,...,v;] € R¥*, then

Vi € argmax IE[HUTXH%] .
UeRdxh !
partial orth. Zle Var({X,u;))

Here is our statistical question: Given samples {Xi}ie[n] id X € R% how can we
estimate the principal components? Straightforwardly, we can use the eigenvectors of the

sample covariance. If we define the sample covariance matrix

E[S] =3,

1 n
S=-> XX/
then our estimator is

0 = argmax (6, 30).
0
By comparison, the ground truth is

0" = argmax(0, X0).
[16lla=1

How close is 0 to #*? We want to translate the closeless of ¥ and 3 to closeness of 6 and
0*. To quantify this, recall Weyl’s eigenvalue perturbation inequality:

Lemma 1.1 (Weyl’s inequality). For any matrices f], %,

IAE) = X(D)]| < E = lop-



The proof of this fact comes from the variational characterization of the eigenvalues.
For a perturbation inequality for the eigenvectors, we also need the first eigen-gap to
be large.

Definition 1.2. Let A;(X) > Aa(X) > -+ > A\g(X) be the eigenvalues of X. Then k-th
eigen-gap is vy = A — Ag+1.

We will write v = 11 to refer to the first eigen-gap. You can think of having a large
eigen-gap as similar to the restricted eigenvalue condition for LASSO. TThe parameter v
plays a similar role to x in LASSO, where RE(S, (k,3)) means that AT&XA > k[|A|3.

Example 1.1. Here is an example of instability of a matrix with a small eigengap. Suppose
we have a diagonal matrix
1 0
Q“‘k Lm]

The eigenvalues are A1(Qp) = 1.01 and \2(Qo) = 1, so the eigengap is v(Qp) = 0.01. In
this case, 0*(Qo) = [ﬂ . Now look at the perturbation

01 1 €
@:%+%1J:L1my

where ¢ is small. If ¢ = 0.01, then 6*(Q.) ~ [0'53

D 0
0.85] , which is far from [J .

1.4 General perturbation bound for eigenvectors

Theorem 1.4. Let ¥ € SdXd, and let 0* € R? be an eigenvector for \(X). Let v =
AM(E) = A2(X) > 0 be the first eigen-gap. Let the perturbation P € S4xd be such that
| Pllop < v/2, and let S =%+ P. If6 € R is an eigenvector for A (S), then

~ 2| P
[ L -
v —2[|P|lop
Here B _
p-uTpy=|T P € R4,
P Py

where U is the orthogonal matriz such that ¥ = UAU " and the blocks ofl3 have sizes

1x1 dx(d—1)
[(d—l)xl (d—l)x(d—l)]



If || P||op, then we get the bound
~ 4 ~ 4
16— 6%112 < Z1Pll2 < 2Pl

To prove this, first let A=0— 0*, and define the quantity
U(A; P) = (9, PB) — (6*, PO*)
= (A, PA) + 2(A, Pg*).
Here is the basic inequality of PCA:
Lemma 1.2 (PCA basic inequality).
v-(1=(0,0?) < [v(A; P)].

The left hand side measures the distance between § and 6*. We first prove this basic
inequality:

Proof. The zero order optimality condition for 7 says that 6 = arg maxg (0, f]@) Then
(6,56 > (6%, 56%).
Recall that £ = X + P. We can express this inequality as
(0,50) + (8, PO) > (6%, $0%) + (6%, PO*).
Putting the like terms on each side gives
(6*,50%) — (9, 20) < (, PO — (9%, PO*).

The right hand side is 1(A; P). ~
To figure out the left hand side, write 8 = p6* + /1 — p?z, where ||z||2 = 1, (2,6%) = 0.
Then p = (0, 6*). We can then expand

(0,%0) = (p0* + /1= p22,5(p0" + /1 — p22))

= p? (0%,30%) +2p/1 = p? (0%, 32) +(1 - p*) (2, %2) .
A 0 <2
=\ = <

The bound on the last term is because (z, Xz) < Sup|,|,=1,(z,0+)=0(%; £2) = 2.
< PP+ (1= pH)ha.
So the left hand side is

(0%,26%) — (6,%8) > A1 — (p° M + (1 — pP)Aa)



= (M = A2)(1 - p%)
=v(1 - p?).
So we get R R
v(1—(0,6%)%) < U(A; P). O
Proof. Given the basic inequality, we now upper bound
U(A; P) = (8, P§) — (6%, PO*).

Write ¥ = UAU T and P = UPUT. We know that U'T6* = e1, the first standard basis

vector, so

UT§:UT(p0*+ 1—p22)+per + V1 —p?

where [|Z]|2 = 1. Then
U(A;P)=(U"9,PU"6) — (U 6*, PUTH*)
<€1+\/1—pZPp61—|—\/1— N} 61,P61
= p*(e1, Pe1) + 2p\/1 — p2(Z, Per) + (1 — p*)(Z, PZ) — (e1, Pey)
= (1—p?) {e1, Pey) +(1 — p?) z,P2}+2p\/1—p2 (Z, Pey) .
—_——— ——
<[IPllop <[Pl
So, using the basic inequality, we get

v(1—p?) < 2(1 = p*)||Pllop + 20\/1 — p?|| P| 2.

We can solve this to get N
= . _20lPle
v —2|Pllop
So

16— 0712 = v/2(1 = p)
V2p  2||P|2
= VItpv—2[Pop
2| P2
T v— 2”P||op'
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