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1 LASSO Prediction Error Bound and High-Dimensional
Principal Component Analysis

1.1 Recap: overview of results for noisy, sparse linear regression

Let’s finish up our analysis of noisy, sparse linear regression. Our model is y = Xθ∗ +w ∈
Rn, where

w ∈ Rn, X =

x
>
1
...
x>n

 ∈ Rn×d, θ∗ ∈ Rd, |S(θ∗)| ≤ s.

We looked at the λ formulation of the LASSO problem, where

θ̂ ∈ arg min
θ∈Rd

1

2n
‖y −Xθ‖22 + λn‖θ‖1.

We also looked at the 1-norm constrained and error-constrained formulations of the prob-
lem. We defined the Cα cone

Cα(S) = {∆ ∈ Rd : ‖∆Sc‖1 ≤ α‖∆S‖1}.

Using this cone, we defined the restricted eigenvalue condition for efficient bounds on
estimation.

Definition 1.1. X ∼ RE(S, (κ, α)) if

1

n
‖X∆‖22 ≥ κ‖∆‖22 ∀∆ ∈ Cα(S).

We proved the following result, upper bounding the estimation error.

Theorem 1.1. Assume that RE(s, (κ, 3)). With a proper choice of hyperparameter, we
have

‖θ̂ − θ∗‖2 .
1

κ

√
s

∥∥∥∥X>wn
∥∥∥∥
∞

. σ

√
s log d

n
.
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We also showed that Gaussian random matrices satisfy this condition with high prob-
ability.

Theorem 1.2. Let X ∈ Rn×d have iid N(0, 1) entries. If n & s log d, then with high
probability, X ∼ RE(S, (κ, 3)) for all |S| ≤ s.

1.2 LASSO prediction error bound

Instead of bounding ‖θ̂− θ∗‖2, we would like to bound the prediction errror (with fixed
design):

1

n
Ew̃[‖ỹ −Xθ̂‖22] =

1

n
‖X(θ̂ − θ∗)‖22 + σ2,

where ỹ = Xθ∗ + w̃ and ∼̃N(0, σ2Id). We can upper bound 1
n‖X(θ̂ − θ∗‖22 ≤ ‖θ̂ −

θ∗‖22‖X>X/n‖op; however, this is not always a good bound because ‖X>X/n‖op, which
has order d/n (which blows up for n� d). Instead, we want to bound the prediction error
directly

Theorem 1.3 (Prediction error bound). Let θ∗ be s-sparse. Assume that the hyperparam-

eter in the λ-formulation of the LASSO problem is λn ≥ 2‖X>wn ‖∞. Then

1. Any optimal solution θ̂ satisfies the bound

1

n
‖X(θ̂ − θ∗)‖22 ≤ 12‖θ∗‖1λn.

2. If X satisfies RE(S, (κ, 3)), then

1

n
‖X(θ̂ − θ∗)‖22 ≤

9

κ
sλ2

n.

Proof. As before, the proof is a basic inequality, plus some algebra.

Remark 1.1. The first bound is . ‖θ∗‖1
√

log d
n , so we get decay O(1/

√
n). This is called

the slow rate bound. The second bound is . s(
√

log d
n )2, so we get decay O(1/n). This

is called the fast rate bound. Usually, without imposing any geometric assumptions, we
get a slower rate bound than we get with such assumptions.

This phenomenon occurs in many settings such as in the empirical risk minimization
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problem.

The setting is that we have data (zi)i∈[n]
iid∼ Pz and a loss function ` : Θ × Z → R. The

empirical risk is

R̂n(θ) =
1

n

n∑
i=1

`(θ;Xi),

and the population risk is
R(θ) = E[`(θ;Zi)].

If we take θ̂ = arg minθ R̂n(θ), the minimizer of the empirical risk, then our generalization
error is

R(θ̂)−R(θ∗).

Without geometric assumptions, we can show a uniform convergence bound

R(θ̂)−R(θ∗) ≤ 2 sup
θ∈Θ
|R̂n(θ)−R(θ)|.

Suppose Θ = B(0, 10‖θ∗‖). The upper bound of such an empirical process usually scales
linearly in ‖θ∗‖, which does not give a very sharp prediction error bound.

Here is what we get with a geometric assumption. Assume that κ‖θ̂ − θ∗‖22 ≤ (R(θ̂)−
R(θ∗)). Here, κ is a strong convexity parameter. With this assumption, we can show
an upper bound that is like

R(θ̂)−R(θ∗) ≤ 2 sup
θ∈B(θ∗,‖θ̂−θ∗‖2)

|R̂n(θ)−R(θ)| . ‖θ̂ − θ∗‖2

√
d log d

n
.

This is nice because it scales linearly in the estimation error, which is usually smaller than

‖θ∗‖. We can bound ‖θ̂ − θ∗‖2 .
√

d log d
n . Applying the geometric assumption gives the

bound

R(θ̂)−R(θ∗) ≤ d log d

n
.
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1.3 Principal component analysis in high dimensions

Suppose we observe covariates X1, X2, . . . , Xn
iid∼ X ∈ Rd with E[X] = 0 and Cov(X) =

Σ ∈ Sd×d+ . Let the eigenvalues of Σ be λ1(Σ) ≥ λ2(Σ) ≥ · · · ≥ λd(Σ) ≥ 0. We can find
an orthonormal basis of eigenvectors v1(Σ), . . . , vd(Σ) ∈ Rd such that Σvi = λivi for all
i ∈ [d]. If we let Λ = diag(λ1, . . . , λd) ∈ Rd×d nad B = [v1, . . . , vd] ∈ Rd×d, then we can
write Σ = V ΛV >.

The statistical interpretation of v1 is that

v1 ∈ arg max
‖v‖2=1

Var(〈x, v〉) X ∈ Rd,E[X] = 0.

= arg max
‖v‖2=1

〈v,E[XX>]v〉

= arg max
‖v2‖=1

〈v,Σv〉.

More generally, if we let Vk = [v1, . . . , vk] ∈ Rd×k, then

Vk ∈ arg max
U∈Rd×k

partial orth.

E[‖U>X‖22]︸ ︷︷ ︸∑k
i=1 Var(〈X,ui〉)

.

Here is our statistical question: Given samples {Xi}i∈[n]
iid∼ X ∈ Rd, how can we

estimate the principal components? Straightforwardly, we can use the eigenvectors of the
sample covariance. If we define the sample covariance matrix

Σ̂ =
1

n

n∑
i=1

XiX
>
i , E[Σ̂] = Σ,

then our estimator is
θ̂ = arg max

θ
〈θ, Σ̂θ〉.

By comparison, the ground truth is

θ∗ = arg max
‖θ‖2=1

〈θ,Σθ〉.

How close is θ̂ to θ∗? We want to translate the closeless of Σ and Σ̂ to closeness of θ and
θ∗. To quantify this, recall Weyl’s eigenvalue perturbation inequality:

Lemma 1.1 (Weyl’s inequality). For any matrices Σ̂,Σ,

|λ(Σ̂)− λi(Σ)| ≤ ‖Σ̂− Σ‖op.
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The proof of this fact comes from the variational characterization of the eigenvalues.
For a perturbation inequality for the eigenvectors, we also need the first eigen-gap to

be large.

Definition 1.2. Let λ1(Σ) ≥ λ2(Σ) ≥ · · · ≥ λd(Σ) be the eigenvalues of Σ. Then k-th
eigen-gap is νk = λk − λk+1.

We will write ν = ν1 to refer to the first eigen-gap. You can think of having a large
eigen-gap as similar to the restricted eigenvalue condition for LASSO. The parameter ν
plays a similar role to κ in LASSO, where RE(S, (κ, 3)) means that ∆>X

>X
n ∆ ≥ κ‖∆‖22.

Example 1.1. Here is an example of instability of a matrix with a small eigengap. Suppose
we have a diagonal matrix

Q0 =

[
1 0
0 1.01

]
.

The eigenvalues are λ1(Q0) = 1.01 and λ2(Q0) = 1, so the eigengap is ν(Q0) = 0.01. In

this case, θ∗(Q0) =

[
0
1

]
. Now look at the perturbation

Qε = Q0 + ε

[
0 1
1 0

]
=

[
1 ε
ε 1.01

]
,

where ε is small. If ε = 0.01, then θ∗(Qε) ≈
[
0.53
0.85

]
, which is far from

[
0
1

]
.

1.4 General perturbation bound for eigenvectors

Theorem 1.4. Let Σ ∈ Sd×d+ , and let θ∗ ∈ Rd be an eigenvector for λ1(Σ). Let ν =
λ1(Σ) − λ2(Σ) > 0 be the first eigen-gap. Let the perturbation P ∈ Sd×d be such that
‖P‖op < ν/2, and let Σ̂ = Σ + P . If θ̂ ∈ Rd is an eigenvector for λ1(Σ̂), then

‖θ̂ − θ∗‖2 ≤
2‖P̃‖2

ν − 2‖P‖op
.

Here

P̃ = U>PU =

[
P̃1,1 P̃>

P̃ P̃2,2

]
∈ Rd×d,

where U is the orthogonal matrix such that Σ = UΛU> and the blocks of P̃ have sizes[
1× 1 d× (d− 1)

(d− 1)× 1 (d− 1)× (d− 1)

]
.
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If ‖P‖op, then we get the bound

‖θ̂ − θ∗‖2 ≤
4

ν
‖P̃‖2 ≤

4

ν
‖P‖op.

To prove this, first let ∆̂ = θ̂ − θ∗, and define the quantity

Ψ(∆̂;P ) = 〈θ̂, P θ̂〉 − 〈θ∗, Pθ∗〉

= 〈∆̂, P ∆̂〉+ 2〈∆̃, Pθ∗〉.

Here is the basic inequality of PCA:

Lemma 1.2 (PCA basic inequality).

ν · (1− 〈θ̂, θ∗〉2) ≤ |ψ(∆̂;P )|.

The left hand side measures the distance between θ̂ and θ∗. We first prove this basic
inequality:

Proof. The zero order optimality condition for θ̂ says that θ̂ = arg maxθ〈θ, Σ̂θ〉. Then

〈θ̂, Σ̂θ̂〉 ≥ 〈θ∗, Σ̂θ∗〉.

Recall that Σ̂ = Σ + P . We can express this inequality as

〈θ̂,Σθ̂〉+ 〈θ̂, P θ̂〉 ≥ 〈θ∗,Σθ∗〉+ 〈θ∗, Pθ∗〉.

Putting the like terms on each side gives

〈θ∗,Σθ∗〉 − 〈θ̂,Σθ̂〉 ≤ 〈θ̂, P θ̂〉 − 〈θ∗, Pθ∗〉.

The right hand side is ψ(∆̂;P ).
To figure out the left hand side, write θ̂ = ρθ∗+

√
1− ρ2z, where ‖z‖2 = 1, 〈z, θ∗〉 = 0.

Then ρ = 〈θ̂, θ∗〉. We can then expand

〈θ̂,Σθ̂〉 = 〈ρθ∗ +
√

1− ρ2z,Σ(ρθ∗ +
√

1− ρ2z)〉

= ρ2 〈θ∗,Σθ∗〉︸ ︷︷ ︸
=λ1

+2ρ
√

1− ρ2 〈θ∗,Σz〉︸ ︷︷ ︸
=0

+(1− ρ2) 〈z,Σz〉︸ ︷︷ ︸
≤2

.

The bound on the last term is because 〈z,Σz〉 ≤ sup‖z‖2=1,〈z,θ∗〉=0〈z,Σz〉 = λ2.

≤ ρ2λ1 + (1− ρ2)λ2.

So the left hand side is

〈θ∗,Σθ∗〉 − 〈θ̂,Σθ̂〉 ≥ λ1 − (ρ2λ1 + (1− ρ2)λ2)
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= (λ1 − λ2)(1− ρ2)

= ν(1− ρ2).

So we get
ν(1− 〈θ̂, θ∗〉2) ≤ Ψ(∆̂;P ).

Proof. Given the basic inequality, we now upper bound

Ψ(∆̂;P ) = 〈θ̂, P θ̂〉 − 〈θ∗, Pθ∗〉.

Write Σ = UΛU> and P = UP̃U>. We know that U>θ∗ = e1, the first standard basis
vector, so

U>θ̂ = U>(ρθ∗ +
√

1− ρ2z) + ρe1 +
√

1− ρ2 U>z︸︷︷︸
=:z̃

,

where ‖z̃‖2 = 1. Then

Ψ(∆̂;P ) = 〈U>θ̂, P̃U>θ̂〉 − 〈U>θ∗, P̃U>θ∗〉

= 〈ρe1 +
√

1− ρ2z̃, P̃ (ρe1 +
√

1− ρ2z̃〉 − 〈e1, P̃ e1〉

= ρ2〈e1, P̃ e1〉+ 2ρ
√

1− ρ2〈z̃, P̃ e1〉+ (1− ρ2)〈z̃, P̃ z̃〉 − 〈e1, P̃ e1〉

= (1− ρ2) 〈e1, P̃ e1〉︸ ︷︷ ︸
≤‖P‖op

+(1− ρ2)〈z̃, P̃ z̃〉+ 2ρ
√

1− ρ2 〈z̃, P̃ e1〉︸ ︷︷ ︸
≤‖P‖2

.

So, using the basic inequality, we get

ν(1− ρ2) ≤ 2(1− ρ2)‖P‖op + 2ρ
√

1− ρ2‖P̃‖2.

We can solve this to get √
1− ρ2 ≤ 2ρ‖P̃‖2

ν − 2‖P‖op

So

‖θ̂ − θ∗‖2 =
√

2(1− ρ)

≤
√

2ρ√
1 + ρ

2‖P̃‖2
ν − 2‖P‖op

≤ 2‖P̃‖2
ν − 2‖P‖op

.
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